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a b s t r a c t

Near-infrared transmittance (NIT) spectroscopy was used to predict the percentage in weight of the fat,

dry matter, protein and fat/dry matter contents in Zamorano cheeses, protected with a Designation of

Origin by the European Union. A total of 42 cheeses submitted to official control were analysed by

reference methods. Samples were scanned (850–1050 nm) and predictive equations were developed

using Partial Least Squares regression with a cross-validation step. Eight pretreatments independent

from the remaining calibration samples were first considered. The most adequate one was that

performing the second derivative (using a Savitzky–Golay method with a nine-point window and a

second-order polynomial) followed by the standard normal variate transformation. Percentages of the

root mean square error in cross-validation, the coefficient of determination and the mean of the

absolute value of relative errors found were, respectively, for fat (0.62; 96.16; 1.05), dry matter (0.76;

96.03; 0.83), protein (0.41; 97.82; 0.81) and the fat/dry matter ratio (0.61; 92.51; 0.66). At a 99%

confidence level, the trueness of the NITþPLS methods for fat, dry matter and protein was verified. The

official regulation for Zamorano cheese demands minimum permitted limits on the percentages in

weight for protein (25%), dry matter (55%) and the ratio of fat to dry matter (45%). The adaptation of

both the decision limit and the detection capability to the case of a minimum permitted limit (CDa and

CDb, respectively) when a Partial Least Squares calibration is used has been applied for the first time for

a food product protected by a Designation of Origin. The values of CDa with a probability of false non-

compliance equal to 0.05 and of CDb when, in addition, the probability of false compliance was equal to

or less than 0.05, both provided by the corresponding NITþPLS-based method, were, respectively, for

protein (24.78%; 24.57%), dry matter (54.14%; 53.28%) and the fat/dry matter ratio (44.39%; 43.78%).

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Infrared (IR) spectroscopy has currently become one of the
most common techniques for a wide range of analyses in various
industries due to the achievement of a fast and non-destructive
method of analysis and the rapid development of multivariate
calibration techniques.
ll rights reserved.
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Regarding dairy industry, both near-infrared (NIR) and mid-
infrared (MIR) spectroscopy have been tested to determine their
potential in acquiring information on process monitoring, deter-
mination of quality, geographical origin and adulteration of dairy
products in processes such as milk, milk powder, butter and
cheese production.

Despite the low sensitivity of the NIR region [1], it is possible
to use these signals to determine the concentration of nearly all
major constituents of dairy products such as water, protein, fat
and carbohydrate using absorption spectroscopy with sufficient
accuracy. In particular, NIR spectroscopy [2–5] has been more
widely used than MIR spectroscopy for cheese composition
determination [6–8], since the radiation light of MIR, in spite of
its better specificity, has a very short penetration depth (usually a
few micrometres) and cannot pass through glass, plastics and
other materials. On the contrary, most packaging stuff is trans-
parent to NIR light [9].
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Since dairy products contain a lot of important intrinsic
fluorophores such as vitamin A and the aromatic amino acids
tryptophan, tyrosine and phenylalanine in proteins, the potential
of front-face fluorescence spectroscopy (FFFS) to succeed in
cheese evaluation has also been investigated [10–12], in some
cases coupled with an IR spectroscopic technique [13,14]. Ref.
[15] is a review of recent developments in this field.

On the other hand, nuclear magnetic resonance (NMR) has
proved to be a versatile spectroscopic technique in dairy research
[16], since some processes such as pressure, heating or changes in
pH, which alter the milk protein conformation and/or the aggre-
gation state, can be studied by NMR [17].

However, for most food samples, all this chemical information is
obscured by changes in the spectra caused by physical properties
such as the particle size of powders. This means that NIR spectro-
scopy becomes a comparative technique requiring calibration
against a reference method for the constituent of interest [18].
Nowadays, most NIR spectroscopic applications are carried out by
using Partial Least Squares (PLS) regression [19,20]. This technique
was devised to find a few linear combinations (latent variables) of
the spectral intensities, X, in order to explain the values of the
reference method, y. The m-th latent variable, lvm, is the result of
maximising the product of corr2(y,Xa) by Var(Xa) with the restric-
tions 99a99¼1 and lvt

i Sa¼ 0ði¼ 1,. . .,m�1Þ to ensure that Xa is
uncorrelated with all the previous linear combinations Xlvi. PLS
is a biased regression method to achieve the highest prediction
capacity. Regarding dairy products, the International Standard ISO
21543:2006 ‘‘Milk products—Guidelines for the application of near
infrared spectrometry’’ governs the performance criteria of this type
of analyses with multivariate calibration techniques [21].

In Spain, both Protected Designation of Origin (PDO) and
Protected Geographical Indication (PGI) represent the system of
recognition of a distinctive quality. This is the consequence of
some typical and distinguishing characteristics caused by (i) a
defined geographical area where raw materials are produced and
products are made, and (ii) the human factor, i.e. the influence of
people that take some part in all these procedures.

Council Regulation (EC) No. 510/2006 of 20 March 2006 [22]
lays down the definitions for PDO and PGI, the two regulatory
figures in a framework of protection applied on agricultural
products and foodstuffs. For the purpose of this Regulation,
‘‘designation of origin’’ (DO) means the name of a region, a
specific place or, in exceptional cases, a country, used to describe
an agricultural product or a foodstuff: (i) originating in that
region, specific place or country, (ii) the quality or characteristics
of which are essentially or exclusively due to a particular
geographical environment with its inherent natural and human
factors, and (iii) the production, processing and preparation of
which take place in the defined geographical area.

Zamorano cheese is protected with a DO since 1993 and
registered as PDO in Commission Regulation (EC) No. 1107/96
[23]. According to the Order of 6 May 1993 (BOE No. 120 of 20
May 1993) [24], that name refers to a compressed-paste fatty cheese
made from milk of ewes of the Spanish Churra and Castellana breeds
and with a ripening step of at least 100 days duration.

This work was aimed to develop a simple and rapid analytical tool
for monitoring simultaneously the fat, dry matter and protein
contents in Zamorano cheese samples by near-infrared transmittance
(NIT) spectroscopy. Calibration models based on a cross-validated PLS
regression of the corresponding constituent, expressed as percentage
in weight, on the spectra recorded were estimated. By comparing the
models arisen, several pretreatments of the spectra were evaluated in
order to achieve the best correlations with the values obtained by
reference methods. Finally, considering for each constituent the best
PLS model, the trueness of the method was estimated, and the
minimum contents of protein, dry matter and the fat-to-dry matter
ratio were calculated in terms of detection capability of the corre-
sponding procedure evaluating the probabilities of false non-com-
pliance and false compliance according to specific regulations.
Currently, these calibration models are being applied systematically
in the Milk Technological Station to accredit the NITþPLS procedure
for the control of the quality of Zamorano cheese.
2. Materials and methodology

2.1. Cheese samples

Forty-two Zamorano cheese samples dated back to either 2010
or 2011 were supplied by the Regulatory Council from all the
producers included in the POD ‘‘Zamorano cheese’’. Cheese
samples were vacuum-packaged and stored at frozen conditions
(�2075 1C) until analysis. Sampling and subsequent analyses
were performed in accordance with the general recommendations
included in the International Standard ISO 21543:2006 [23].

2.2. Reference analyses

All reference analyses were carried out in the Milk Technolo-
gical Station (Agro Technological Institute) in Palencia, which is
an accredited laboratory for the performance of such determina-
tions according to the criteria established in the regulation UNE-
EN ISO/IEC 17025 [25].

The determination of the fat, dry matter and protein contents
was achieved following the official methods [26–28]. As a step in
their official accreditation, the uncertainty of these analytical
methods had been previously evaluated as standard deviation and
resulted in (i) 0.36% when the fat percentage in weight ranged
from 0.90% to 45.0%; (ii) 0.64% when the dry matter percentage in
weight ranged from 20.0% to 80.0%; and (iii) 0.41% when the
protein percentage in weight ranged from 6.0% to 30.0%.

All the reference analyses were performed in duplicate. For
each sample, the mean was used as the value of the fat, dry
matter or protein content as appropriate.

2.3. Near-infrared spectroscopy

All samples were allowed to reach room temperature (2572 1C)
before analysis. Then each sample was grated after being removed
from its plastic package and once all outer portions had been cut off.
Approximately 40 g of each homogeneous grated cheese was packed
into a 100 mm-diameter Petri dish in order to achieve an air hole-
free optical path length of about 10 mm. To minimise sampling
error, all samples were analysed in triplicate, except for two of them,
which were in duplicate.

The samples were measured using NIT mode on a FOSS
FoodScan Lab (Hilleroed, Denmark). Because of its effect on
spectral response [29], the temperature of the spectroscopic
measurements was controlled within the range 26–30 1C. NIT
spectra were collected from 850 to 1050 nm at 2 nm intervals in a
log 1/T format, where T is the sample transmittance. Each
spectrum was an average of 16 sub-spectra recorded at sixteen
different points by rotating the Petri dish automatically in the
analyser. Therefore, 124 NIT spectra (shown in Fig. 1a) were
finally obtained, which made up the calibration set.

2.4. Chemometrics: multivariate analysis

2.4.1. Data preprocessing

Both a slightly curved baseline and a baseline offset can
be seen in Fig. 1(a), which made preprocessing necessary to
transform data in such a way that the multivariate signals would
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Fig. 1. NIT spectra of the 124 Zamorano cheese samples in the original calibration

set. On the X-axis, the spectral region (from 850 to 1050 nm). (a) Raw spectra. On

the Y-axis, the logarithm of the inverse of the transmittance T of the sample.

(b) Preprocessed spectra by means of the second derivative (9-point window,

2nd-order polynomial) of the spectra followed by a SNV transformation.
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better adhere to Beer’s law. Eight pretreatments were evaluated
by comparison of the calibration models estimated from the
corresponding preprocessed data.
(i)
 Standard normal variate (SNV) is an autoscaling of spectra
(rows of the data matrix), so a reference spectrum is not
needed and the pretreatment for each sample is independent
of the others.
However, as there is no regression step, SNV does not remove
noise [9]. This preprocessing is weighted towards considering
the spectrum values that deviate from the mean more heavily
than those near the mean.
(ii)
 Derivatives are a common method used to remove the
unimportant baseline signal from spectra by taking the
derivative with respect to the variable number. This method
is adequate for NIT signals because variables are strongly
related to each other and the adjacent variables contain
similar correlated signals. The first derivative of every
spectrum has been carried out using a Savitzky–Golay [30]
method (SG) with a window of nine points and a second-
order polynomial. This preprocessing procedure is anno-
tated as SG (9,2,1) in the following.
(iii)
 Second derivative of the NIT signals also using SG method
(window with 9 points and second-order polynomial),
named SG (9,2,2).
(iv)
 SNV followed by detrending. Detrend fits a polynomial (of
second order in this work) to the entire spectra containing
both baseline and signal and subtracts this polynomial. As
such, it works optimally when the largest source of spectral
signal in each sample is background interference. The
detrend method was introduced along with the SNV trans-
formation by Barnes et al. [31].
(v)
 SNV followed by SG (9,2,1).

(vi)
 SNV followed by SG (9,2,2).
(vii)
 SG (9,2,1) followed by SNV.

(viii)
 SG (9,2,2) followed by SNV.
2.4.2. Partial Least Squares regression

Data were arranged in a matrix X with dimensions (124�
100), where 124 refers to the total number of samples analysed
and 100 to the set of wavelengths (predictors) recorded. For each
pretreatment, four PLS models were performed where responses
were the fat, dry matter, protein and the fat-to-dry matter
percentage in each cheese sample. The values of these four
responses were obtained by means of reference analysis methods.

For the cross-validation step, three cancellation groups were
chosen so that the three (or two) samples that had been assigned
the same reference value always stayed together as they referred
to the same cheese; otherwise, there is a risk of overfitting.

As previously stated [32–34], in every instance the procedure
followed for the PLS regression was as follows.
(i)
 Preprocess X data with the procedures (i)–(viii) indicated
above and autoscale the response y.
(ii)
 Determine the optimum number of latent variables by
plotting the root mean square error in cross-validation
(RMSECV) versus the number of latent variables. Generally,
the best solution should be the one giving the lowest
RMSECV with the fewest variables, minding that value is
not lower than that of the uncertainty for the corresponding
reference method to avoid overfitting the model.
(iii)
 Remove those samples with standardized residual (in abso-
lute value) greater than 2.5 (considered as y-outliers) and/or
with both Q and T2 Hotelling values higher than their
corresponding thresholds at a 95% confidence level (consid-
ered as outliers in the calibration subspace). The Q residual
index indicates the difference or residual between the value
of the sample and its projection on the subspace of the
model, while the T2 Hotelling statistic is a measurement of
the Mahalanobis distance from each sample to the centroid,
measured in the projection plane (hyperplane) of the model
considered.
(iv)
 Repeat steps (ii) and (iii) until there are no outliers of
any kind.
After a PLS model had been obtained for each response, with
the aim of checking the validity of the method, a least squares (LS)
linear regression between the PLS calculated values of the
response and the values obtained by the corresponding official
method was performed in each case. LS regression is unbiased
and with the lowest variance providing that residuals have the
same normal distribution in all samples. But this distributional
property of the residuals is false if some datum lies outside the
linear tendency, so the good inferential properties of the LS
regression are cancelled. This could occur if there were outlier
samples with erroneous values either calculated from the PLS
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model or wrongly determined from reference analyses. Therefore,
previously an outlier detection step based on a least median of
squares (LMS) regression is necessary [35,36], which provides an
objective and robust criterion to detect outliers. So, every sample
whose standardized residual (SR) and/or diagnostic resistance
(DR) with regard to the LMS model is in absolute value higher
than 2.5, will be removed from the data set. The final LS linear
regression, actually called reweighted least squares (RLS) regres-
sion, of predicted values of the response versus true values will be
carried out with the remaining data.

Finally, two hypothesis tests enabled to verify the trueness of
the method by checking if, at a significance level a, there were no
statistically significant differences between the values obtained,
respectively, for the slope (b1) and 1, and the intercept (b0) and 0.
In such a case, it could be concluded that the trueness of the PLS
method built was confirmed at the confidence level 1–a.
2.4.3. Assessing the minimum permitted limit with a multivariate

signal

When, as it happens in the present work, a minimum permitted
limit x0 has been established for a substance, the following one-
tailed hypothesis test is posed for the presence of the analyte in the
problem sample:

H0 : x¼ x0 ðthe quantity of analyte is greater than or equal to x0Þ:

Ha : xox0 ðthe concentration of analyte is lesser than x0Þ:

ð1Þ

The decision limit (CDa) of the method is the concentration
below which it can be decided with a statistical certainty of 1–a
that the minimum permitted limit has been truly exceeded. CDa
is related with the probability of false non-compliance, a. That is,
a is the probability of maintaining that the tested sample is not
compliant when it is (false non-compliance decision or type I

error). Formally, a¼ prfreject H0=H0 is trueg.
But it is also necessary to assess the probability, b, of false

compliant decision (type II error). b is the probability of affirming
that the tested sample has a quantity of the analyte greater than
or equal to x0, i.e., to conclude that it is compliant when it is not.
Formally, b¼ prfaccept H0=H0 is falseg.

Therefore, the capability of detection (CDb) of the method is
the concentration above which it can be assessed that the
probability of false compliance is b and that of false non-
compliance is a. CDb, which is the critical value of the hypothesis
test in Eq. (1), depends on a, b, the number of replicate measure-
ments in the test sample and the sensitivity and the precision of
the method [37].

Once the probability a has been established, the plot of b
versus CDb represents the operative curve of the hypothesis test
in Eq. (1). The latter shows the capacity of the method to
discriminate a specific quantity with regard to the minimum
permitted limit.

Analytical methods provide signals and both CDa and CDb are
concentrations, so a calibration curve is necessary to relate signals
and concentrations.

If x0 is either null or the maximum limit permitted, the
alternative hypothesis is formulated as the concentration of
analyte is greater than x0(x4x0). If the analytical signal is
univariate and the calibration curve is linear, then CDa and CDb
are named, respectively, CCa, (decision limit) and CCb (capability
of detection). This definition of detection capability has been
accepted by both IUPAC [38], ISO 11843 [39] and some European
regulations [40].

In the case of using multivariate and/or multiway signals, the
approach as hypothesis test is the same, but the calibration model
‘‘signal equal to a linear function of concentration’’ is no longer
valid. Instead, the concentration y is the response to be fitted as a
function of a vector, X, when signals are multivariate, or a tensor,
X, if signals are multiway. The previous concepts of CCa and CCb
have been generalised for these signals with multivariate calibra-
tions such as PLS [41] or multiway such as n-PLS or PARAFAC [42].
The procedure can be also used with any kind of calibration
function such as a neural network [43]. The use of CDa and CDb
for assuring a minimum value has been developed in [33], but the
present work means their application for the first time to ensure a
minimum value regulated in food. The procedure is based on the
regression PLS calculated concentration versus true concentra-
tion. A tutorial about how to evaluate type I and type II errors in
various kinds of chemical analyses can be consulted in [38].

2.5. Software

The FoodScan software (FOSS) was used to acquire spectra.
Raw data were exported to MATLAB using WinISI III, version 1.60
(Infrasoft International, Port Matilda, PA, USA). PLS regressions
were computed with the PLS_Toolbox [44] for use with MATLAB
version 7.9.0.529 (The MathWorks, Inc.). Linear regressions
between PLS calculated concentration and true concentrations,
and hypothesis tests necessary to check the accuracy of the PLS
models were done with STATGRAPHICS [45]. Least median of
squares regressions for detection of outliers were carried out with
PROGRESS [36]. A home-made programme, NWAYDET, was used
to estimate CDa and CDb for protein, dry matter and the ratio of
fat/dry matter.
3. Results and discussion

3.1. Construction of PLS models

The whole set of 124 NIT spectra was selected for PLS calibration
development following the procedure explained in the ‘‘Partial
Least Squares regression’’ subsection. According to the results of
reference methods, percentages in weight of the three constitu-
ents analysed ranged: (i) from 33.30% to 42.94% for fat; (ii) from
63.95% to 77.20% for dry matter; (iii) from 22.21% to 28.73% for
protein.

24 PLS models (not showed) built to estimate each of the three
response variables from each set of pretreated NIT data were
compared in order to select the best preprocessing method. Thus,
the chosen pretreatment was SG (9,2,2) followed by SNV. That
transformation of the NIT spectra generally involved the lowest
number of latent variables in the final model together with the
highest percentage of explained variance of the response without
having removed too many outlier data from the calibration set.
Fig. 1(b) shows the 124 NIT spectra once pretreated according to
the SG (9,2,2)þSNV methodology.

The results of the application of the procedure for estimating
the relation between each response and the NIT spectra are
summarised in Table 1.

For example, with regard to fat, for the initial calibration set
(124 objects), the optimal RMSECV value (0.74) was obtained
from the 7-latent variable model (RMSEC¼0.60; 93.17% of
explained variance of fat). Samples with numbers 75 and 76
had standardized residuals greater than 2.5 in absolute value
when that number of latent variables was considered, so they
were removed from the calibration set. The process was repeated
with the remaining objects. In the second column in Table 1 the
evolution of the models built is displayed. Thus the optimum
number of latent variables was 7 for the fourth model
(RMSEC¼0.50; RMSECV¼0.62; 95.37% of explained variance of
fat). In this case, as no objects presented neither standardized



Table 1
Evolution of the development of PLS models in the calibrations of the fat, dry matter and protein contents versus the NIT spectra registered.

Response variable PLS model

(number of samples)

Number of LVa Explained variance

of predictors (%)

Sample indexes considered

to be outlier data

Explained variance

of response (%)

RMSECb RMSECVc

Fat 1st (124) 7 99.99 93.17 75 (SRd
¼3.36) 0.06 0.74

76 (SR¼3.14)

2nd (122) 7 99.99 94.52 27 (SR¼�2.53) 0.54 0.65

3rd (120) 6 99.99 94.68 26 (SR¼�2.67) 0.53 0.64

28 (SR¼�2.60)

4th (119) 7 99.99 95.37 0.50 0.62

Dry matter 1st (124) 4 99.97 90.33 21 (SR¼3.51) 1.08 1.18

22 (SR¼3.54)

86 (SR¼�2.56)

2nd (121) 4 99.97 92.98 24 (SR¼�2.51) 0.93 1.03

40 (SR¼2.57)

75 (SR¼2.61)

76 (SR¼2.70)

88 (SR¼2.76)

3rd (116) 4 99.97 94.83 38 (SR¼2.74) 0.80 0.86

39 (SR¼2.65)

4th (114) 5 99.98 95.75 87 (SR¼�2.64) 0.71 0.77

5th (113) 5 99.98 96.03 0.69 0.76

Protein 1st (124) 9 100 95.37 115(SR¼�2.89) 0.03 0.44

2nd (123) 9 100 96.02 77 (Qe
¼0.02; T2 e

¼23.92) 0.29 0.43

3rd (122) 10 100 96.21 113 (SR¼�2.55) 0.28 0.42

4th (121) 10 100 96.57 0.27 0.41

a Latent variables.
b Root mean square error in calibration.
c Root mean square error in cross-validation.
d Standardized residual of data considered y-outliers.
e Defined in Partial Least Squares regression section.

Table 2
Results of the LMS and LS regressions performed with the values of each response calculated from the corresponding PLS model versus true values.

Response

variable

LMS regression results predicted response vs. true

response

Reweighted LS regression results predicted response vs. true response

n Number of

outliers

Outlier

indexes

SRa DRb n b0 b1 R2

(%)

syx p-Value for the test

b0¼0

p-Value for the test

b1¼1

Trueness of the

method

Fat 119

Objects

4 10 2.52 1.75 115

Objects

1.59 0.96 96.16 0.45 0.02 0.02 YES

87 2.60 2.05

88 2.57 2.03

89 2.76 2.16

Dry matter 113

Objects

0 – – – 113

Objects

2.82 0.96 96.03 0.68 0.03 0.03 YES

Protein 121

Objects

9 4 2.70 1.70 112

Objects

0.56 0.98 97.82 0.22 0.12 0.13 YES

24 �2.78 2.01

50 �3.18 2.15

51 �2.78 1.91

52 �2.59 1.80

74 �3.32 2.21

82 �2.67 1.78

99 2.63 1.71

112 �2.90 2.02

a Standardized residual of the object.
b Diagnostic resistance of the object.
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residuals higher than 2.5 in absolute value nor Q and T2 Hotelling
values greater than their corresponding threshold values at a 95%
confidence level, this was considered the final PLS model for fat.
With this PLS model, the mean, median and standard deviation of
the absolute value of the relative error in calibration, which
ranged from 0.03% to 3.26%, were, respectively, 1.05%, 0.87%
and 0.78%.
With regard to dry matter and protein contents, the same
procedure was applied for the estimation of the corresponding PLS
model which relates each response with the pretreated NIT spectra.
As can be seen in Table 1, in the case of dry matter, after the removal
of the outlier data (11) encountered, the number of latent variables
that achieved the optimum value for RMSECV was 5 (RMSEC¼0.69;
RMSECV¼0.76; 96.03% of explained variance of dry matter). With
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this PLS model, the mean, median and standard deviation of the
absolute value of the relative error in calibration, which ranged from
0.02% to 1.99%, were, respectively, 0.83%, 0.74% and 0.53%. On the
other hand, for the protein content, once 3 outlier data had been
rejected, the PLS model that fitted this response best was the one
estimated from 10 latent variables (RMSEC¼0.27; RMSECV¼0.41;
96.57% of explained variance of protein), while the mean, median
and standard deviation of the absolute value of the relative error in
calibration, which ranged from 0.00% to 2.67%, were, respectively,
0.81%, 0.68% and 0.65%.

It can be seen that, in every instance, the value of the root
mean square error in calibration (RMSEC) was quite similar to
that of RMSECV, which shows that all the models are stable.

3.2. Trueness of the PLS models in calibration

After a PLS model had been estimated for each of the three
responses, a least squares (LS) linear regression was performed with
the PLS predicted values of the response versus the values obtained
by the corresponding reference method. Before the LS calibration, a
LMS regression was carried out to detect possible outlier data caused
by some kind of mistake occurred either at the construction of the PLS
model or during analyses by the official method. The results of the
LMS and LS regressions and p-values for the two hypothesis tests
posed to check the trueness of every method are listed in Table 2. As
p-values were higher than 0.01, it was asserted that, in all cases, the
analytical behaviour of the PLS method was the same as that of the
corresponding reference procedure at a 99% confidence level. Plots of
the percentage of each variable obtained by PLS regression as a linear
function of the content provided by the respective official method are
illustrated in Fig. 2a (fat), b (dry matter) and c (protein).

3.3. Detection capability for protein, dry matter and fat-to-dry

matter ratio

In the chapter IV of [26], which lays down the regulations and
specifications of Zamorano cheeses, the following physicochem-
ical properties are established:
Fig. 2. Regression line of the values of each response calculated from its PLS model v

matter content; (c) protein content; and (d) fat/dry matter content.
(i)
ersus
The protein content must not be lower than 25% in weight.

(ii)
 The dry matter content must not be lower than 55% in

weight.

(iii)
 The fat-to-dry matter ratio, expressed as percentage in

weight, must not be lower than 45%.
In this context, the detection capability of every method at its
respective minimum permitted level with a¼b¼0.05 was esti-
mated from the corresponding RLS regression performed pre-
viously. So, for each case and for a specific number of replicates,
the operative curve of the hypothesis test (Eq. 1) was determined
when a¼0.05. This graph shows the probability of false compliance,
b, as a function of the percentage in weight of the corresponding
response (protein, dry matter and fat-to-dry matter ratio) for its
the values obtained by the reference methodology. (a) Fat content; (b) dry
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minimum level stated above. This nominal value is, in each case,
that of x0 in Eq. (1).

For the percentage of total protein in Zamorano cheeses,
several operative curves for the nominal minimum protein con-
tent of 25% are pictured in Fig. 3. Particularly, for a¼b¼0.05, the
decision limit, CDa, was 24.78% and the detection capability, CDb,
equalled 24.57% when 3 replicates were considered, curve (c). So
the NITþPLS-based method is able to distinguish 24.57% from
25% with probabilities of false non-compliance and false compli-
ance equal to 0.05.

For the dry matter content, Fig. 4 collects four power curves for
the minimum limit of 55%. With 3 replicates and a¼b¼0.05, CDa
would be 54.14%, and CDb 53.28%, curve (c). The values for the
dry matter percentage of the samples analysed ranged from
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Fig. 4. Probability of false compliance, b, versus dry matter percentage in weight

(probability of false non-compliance, a, fixed at 5%). (a) One replicate; (b) two

replicates; (c) three replicates; and (d) infinite replicates. Nominal minimum

value: 55% in weight.

Table 3
Evolution of the development of the PLS calibration of the fat-to-dry matter ratio, expre

LMS and LS regressions performed.

PLS model (number of

samples)

Number of

LVa

Explained variance of

predictors (%)

Explained

response (

1st (124) 6 99.99 72.21

2nd (122) 7 99.99 83.66

3rd (118) 8 99.99 88.41

4th (116) 8 99.99 91.26

5th (115) 7 99.99 91.91

6th (114) 8 99.99 92.85

7th (113) 8 100 92.93

a Latent variables.
b Root mean square error in calibration.
c Root mean square error in cross-validation.
d Standardized residual of data considered y-outliers.
e Defined in Partial Least Squares regression section
63.95% to 77.20%, all of them higher than the minimum percen-
tage in law. This means that both CDa and CDb were extrapolated
values and for this reason they were overestimated. That is, the
NITþPLS-based method is able to distinguish 53.28% from 55%
with a probability of false non-compliance equal to 0.05 and a
probability of false compliance less than 0.05.

In the case of the fat/dry matter percentage, the PLS model
which relates this variable to the SG (9,2,2)þSNV-pretreated
spectra was first built instead of considering the ratio of the
values obtained by PLS regression for fat and dry matter. Accord-
ing to the results of reference methods, percentages in weight of
this ratio ranged from 49.96% to 59.87%. The evolution of the
procedure designed to achieve the PLS regression is collected in
Table 3, where it is shown that, after 11 outlier objects had been
removed from the calibration set, the model that fitted the fat/dry
matter ratio best was the one estimated from 8 latent variables
(RMSEC¼0.42; RMSECV¼0.61; 92.93% of explained variance of
the response). The mean, median and standard deviation of the
absolute value of the relative error in calibration, which ranged
from 0.03% to 1.98%, were, respectively, 0.66%, 0.59% and 0.43%.

Next, a LMS regression with PLS values versus true values was
performed. No outlier data were found, so the LS regression with
the 113 remaining samples has slope 0.94 and intercept 4.07 with
a standard error of 0.4 and a coefficient of determination equal to
92.51%. This regression is plotted in Fig. 2(d). Both p-values for
the two hypothesis tests (slope equal to 1 and intercept equal to
0) were 0.004, so the PLS regression was biased at a 99%
confidence level. This bias, which was statistically significant,
should be assessed in practice because it is equal to an error in the
determination with PLS regression of the fat/dry matter ratio
between 0.78% and 1.14%. However, if desired, the bias could be
corrected using the following equation:

Fat=Dry matter¼
Fat=Dry matterPLS predicted�4:07

0:93
ð2Þ

Lastly, the detection capability of the method for the fat-to-dry
matter percentage at the minimum permitted level of 45% was
estimated with a¼b¼0.05. The operative curves determined for
several numbers of replicates and a¼0.05 are depicted in Fig. 5.
ssed as percentage in weight, versus the pretreated NIT spectra, and results of the

variance of

%)

Sample indexes considered to be

outlier data

RMSECb RMSECVc

21 (SRd
¼�5.01) 0.92 1.16

22 (SR¼�5.04)

40 (SR¼�2.58) 0.65 0.94

86 (SR¼2.52)

87 (SR¼2.87)

88 (SR¼2.91)

38 (SR¼�3.21) 0.53 0.75

39 (SR¼�3.33)

75 (SR¼2.70) 0.46 0.63

76 (SR¼2.63) 0.48 0.61

77 (Qe
¼0.02; T2 e

¼29.92) 0.42 0.61

– 0.42 0.61
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Fig. 5. Probability of false compliance, b, versus fat/dry matter percentage in

weight (probability of false non-compliance, a, fixed at 5%). (a) One replicate;

(b) two replicates; (c) three replicates; and (d) infinite replicates. Nominal

minimum value: 45% in weight.
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If 3 replicates were specifically considered and probabilities of
false non-compliance, a, and false compliance, b, fixed at 0.05,
CDa would be 44.39%, while CDb would equal 43.78%, curve (c).

The true values of the fat/dry matter ratio were between 50%
and 57.5%, higher than the minimum allowable quantity (45%) so,
as in the case of the dry matter content, the conclusion was that
the NITþPLS-based method is able to distinguish 43.78% from
45% with a probability of false non-compliance equal to 0.05 and
a probability of false compliance less than 0.05.
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